Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.372
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38612759

RESUMO

As a regulator of alveolo-capillary barrier integrity, Transient Receptor Potential Vanilloid 4 (TRPV4) antagonism represents a promising strategy for reducing pulmonary edema secondary to chemical inhalation. In an experimental model of acute lung injury induced by exposure of anesthetized swine to chlorine gas by mechanical ventilation, the dose-dependent effects of TRPV4 inhibitor GSK2798745 were evaluated. Pulmonary function and oxygenation were measured hourly; airway responsiveness, wet-to-dry lung weight ratios, airway inflammation, and histopathology were assessed 24 h post-exposure. Exposure to 240 parts per million (ppm) chlorine gas for ≥50 min resulted in acute lung injury characterized by sustained changes in the ratio of partial pressure of oxygen in arterial blood to the fraction of inspiratory oxygen concentration (PaO2/FiO2), oxygenation index, peak inspiratory pressure, dynamic lung compliance, and respiratory system resistance over 24 h. Chlorine exposure also heightened airway response to methacholine and increased wet-to-dry lung weight ratios at 24 h. Following 55-min chlorine gas exposure, GSK2798745 marginally improved PaO2/FiO2, but did not impact lung function, airway responsiveness, wet-to-dry lung weight ratios, airway inflammation, or histopathology. In summary, in this swine model of chlorine gas-induced acute lung injury, GSK2798745 did not demonstrate a clinically relevant improvement of key disease endpoints.


Assuntos
Lesão Pulmonar Aguda , Antineoplásicos , Benzimidazóis , Compostos de Espiro , Animais , Suínos , Cloro/toxicidade , Canais de Cátion TRPV , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Inflamação , Oxigênio
2.
Ther Adv Respir Dis ; 18: 17534666241244974, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38616385

RESUMO

Nanoparticles have attracted extensive attention due to their high degree of cell targeting, biocompatibility, controllable biological activity, and outstanding pharmacokinetics. Changing the size, morphology, and surface chemical groups of nanoparticles can increase the biological distribution of agents to achieve precise tissue targeting and optimize therapeutic effects. Examples of their use include nanoparticles designed for increasing antigen-specific immune responses, developing vaccines, and treating inflammatory diseases. Nanoparticles show the potential to become a new generation of therapeutic agents for regulating inflammation. Recently, many nanomaterials with targeted properties have been developed to treat acute lung injury/acute respiratory distress syndrome (ALI/ARDS). In this review, we provide a brief explanation of the pathological mechanism underlying ALI/ARDS and a systematic overview of the latest technology and research progress in nanomedicine treatments of ALI, including improved nanocarriers, nanozymes, and nanovaccines for the targeted treatment of lung injury. Ultimately, these nanomedicines will be used for the clinical treatment of ALI/ARDS.


Assuntos
Lesão Pulmonar Aguda , Síndrome do Desconforto Respiratório , Humanos , Nanomedicina , Lesão Pulmonar Aguda/tratamento farmacológico , Movimento Celular , Inflamação , Síndrome do Desconforto Respiratório/tratamento farmacológico
3.
Molecules ; 29(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38611791

RESUMO

Acute lung injury (ALI) represents a life-threatening condition with high morbidity and mortality despite modern mechanical ventilators and multiple pharmacological strategies. Therefore, there is a need to develop efficacious interventions with minimal side effects. The anti-inflammatory activities of sea cucumber (Cucumaria frondosa) and wild blueberry (Vaccinium angustifolium) extracts have been reported recently. However, their anti-inflammatory activities and the mechanism of action against ALI are not fully elucidated. Thus, the present study aims to understand the mechanism of the anti-inflammatory activity of sea cucumber and wild blueberry extracts in the context of ALI. Experimental ALI was induced via intranasal lipopolysaccharide (LPS) instillation in C57BL/6 mice and the anti-inflammatory properties were determined by cytokine analysis, histological examination, western blot, and qRT-PCR. The results showed that oral supplementation of sea cucumber extracts repressed nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways, thereby downregulating the expression of interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF) in the lung tissue and in the plasma. Wild blueberry extracts also suppressed the expression of IL-4. Furthermore, the combination of sea cucumber and wild blueberry extracts restrained MAPK signaling pathways by prominent attenuation of phosphorylation of NF-κB, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK) while the levels of pro-inflammatory cytokines were significantly suppressed. Moreover, there was a significant and synergistic reduction in varying degrees of ALI lesions such as distorted parenchyma, increased alveoli thickness, lymphocyte and neutrophil infiltrations, fibrin deposition, pulmonary emphysema, pneumonia, intra-alveolar hemorrhage, and edema. The anti-inflammatory effect of the combination of sea cucumber and wild blueberry extracts is associated with suppressing MAPK and NF-κB signaling pathways, thereby significantly reducing cytokine storm in LPS-induced experimental ALI.


Assuntos
Lesão Pulmonar Aguda , Mirtilos Azuis (Planta) , Extratos Vegetais , Pepinos-do-Mar , Camundongos , Animais , Camundongos Endogâmicos C57BL , NF-kappa B , Sistema de Sinalização das MAP Quinases , Lipopolissacarídeos/toxicidade , Inflamação/tratamento farmacológico , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Citocinas , MAP Quinases Reguladas por Sinal Extracelular , Interleucina-1beta , Anti-Inflamatórios/farmacologia
4.
Mol Biol Rep ; 51(1): 492, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578368

RESUMO

BACKGROUND: Lactoferrin (LF) is an iron-binding multifunctional cationic glycoprotein. Previous studies have demonstrated that LF may be a potential drug for treating acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). In this study, we explored the anti-inflammatory effect and mechanism of bovine lactoferrin (bLF) in ALI using the RNA sequencing (RNA-seq) technology and transcriptome analysis. METHODS AND RESULTS: Based on the differentially expressed genes (DEGs) obtained from RNA-seq of the Lung from mouse model, the bioinformatics workflow was implemented using the BGISEQ-500 platform. The protein-protein interaction (PPI) network was obtained using STRING, and the hub gene was screened using Cytoscape. To verify the results of transcriptome analysis, the effects of bLF on Lipopolysaccharide (LPS)-induced BEAS-2B cells and its anti-reactive oxygen species (ROS), anti-inflammatory, and antiapoptotic effects were studied via Cell Counting Kit-8 (CCK-8) test, active oxygen detection test, ELISA, and western blot assay. Transcriptome analysis revealed that two hub gene modules of DEGs were screened via PPI analysis using the STRING and MCODE plug-ins of Cytoscape. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that these core modules are enriched in the PPAR (peroxisome proliferator-activated receptor) and AMPK (AMP-activated protein kinase) signaling pathways. Through cell experiments, our study shows that bLF can inhibit ROS, inflammatory reaction, and LPS-induced BEAS-2B cell apoptosis, which are significantly antagonized by the PPAR-γ inhibitor GW9662. CONCLUSION: This study has suggested that the PPAR-γ pathway is the critical target of bLF in anti-inflammatory reactions and apoptosis of ALI, which provides a direction for further research.


Assuntos
Lesão Pulmonar Aguda , Lactoferrina , Animais , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/genética , Anti-Inflamatórios/farmacologia , Apoptose , Lactoferrina/farmacologia , Lipopolissacarídeos , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Espécies Reativas de Oxigênio/metabolismo
5.
Braz J Med Biol Res ; 57: e13235, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38511769

RESUMO

The imbalance between pro-inflammatory M1 and anti-inflammatory M2 macrophages plays a critical role in the pathogenesis of sepsis-induced acute lung injury (ALI). Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) may modulate macrophage polarization toward the M2 phenotype by altering mitochondrial activity. This study aimed to investigate the role of the PGC-1α agonist pioglitazone (PGZ) in modulating sepsis-induced ALI. A mouse model of sepsis-induced ALI was established using cecal ligation and puncture (CLP). An in vitro model was created by stimulating MH-S cells with lipopolysaccharide (LPS). qRT-PCR was used to measure mRNA levels of M1 markers iNOS and MHC-II and M2 markers Arg1 and CD206 to evaluate macrophage polarization. Western blotting detected expression of peroxisome proliferator-activated receptor gamma (PPARγ) PGC-1α, and mitochondrial biogenesis proteins NRF1, NRF2, and mtTFA. To assess mitochondrial content and function, reactive oxygen species levels were detected by dihydroethidium staining, and mitochondrial DNA copy number was measured by qRT-PCR. In the CLP-induced ALI mouse model, lung tissues exhibited reduced PGC-1α expression. PGZ treatment rescued PGC-1α expression and alleviated lung injury, as evidenced by decreased lung wet-to-dry weight ratio, pro-inflammatory cytokine secretion (tumor necrosis factor-α, interleukin-1ß, interleukin-6), and enhanced M2 macrophage polarization. Mechanistic investigations revealed that PGZ activated the PPARγ/PGC-1α/mitochondrial protection pathway to prevent sepsis-induced ALI by inhibiting M1 macrophage polarization. These results may provide new insights and evidence for developing PGZ as a potential ALI therapy.


Assuntos
Lesão Pulmonar Aguda , Sepse , Camundongos , Animais , Pioglitazona , Regulação para Cima , PPAR gama/metabolismo , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/prevenção & controle , Sepse/complicações , Lipopolissacarídeos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo
6.
Molecules ; 29(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38542876

RESUMO

Endothelial inflammation is a multifaceted physiological process that plays a pivotal role in the pathogenesis and progression of diverse diseases, encompassing but not limited to acute lung infections like COVID-19, coronary artery disease, stroke, sepsis, metabolic syndrome, certain malignancies, and even psychiatric disorders such as depression. This inflammatory response is characterized by augmented expression of adhesion molecules and secretion of pro-inflammatory cytokines. In this study, we discovered that saponins from Allium macrostemon bulbs (SAMB) effectively inhibited inflammation in human umbilical vein endothelial cells induced by the exogenous inflammatory mediator lipopolysaccharide or the endogenous inflammatory mediator tumor necrosis factor-α, as evidenced by a significant reduction in the expression of pro-inflammatory factors and vascular cell adhesion molecule-1 (VCAM-1) with decreased monocyte adhesion. By employing the NF-κB inhibitor BAY-117082, we demonstrated that the inhibitory effect of SAMB on VCAM-1 expression may be attributed to the NF-κB pathway's inactivation, as characterized by the suppressed IκBα degradation and NF-κB p65 phosphorylation. Subsequently, we employed a murine model of lipopolysaccharide-induced septic acute lung injury to substantiate the potential of SAMB in ameliorating endothelial inflammation and acute lung injury in vivo. These findings provide novel insight into potential preventive and therapeutic strategies for the clinical management of diseases associated with endothelial inflammation.


Assuntos
Lesão Pulmonar Aguda , Cebolinha-Francesa , Medicamentos de Ervas Chinesas , Saponinas , Humanos , Animais , Camundongos , NF-kappa B/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo , Saponinas/farmacologia , Lipopolissacarídeos/toxicidade , Inflamação/tratamento farmacológico , Inflamação/prevenção & controle , Células Endoteliais da Veia Umbilical Humana , Fator de Necrose Tumoral alfa/farmacologia , Lesão Pulmonar Aguda/tratamento farmacológico , Mediadores da Inflamação/metabolismo
7.
J Tradit Chin Med ; 44(2): 303-314, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38504536

RESUMO

OBJECTIVE: To investigate the impact of Yemazhui (Herba Eupatorii Lindleyani, HEL) against lipopolysaccharide (LPS)-induced acute lung injury (ALI) and explore its underlying mechanism in vivo. METHODS: The chemical constituents of HEL were analyzed by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry method. Then, HEL was found to suppress LPS-induced ALI in vivo. Six-week-old male Sprague-Dawley rats were randomly divided into 6 groups: control, LPS, Dexamethasone (Dex), HEL low dose 6 g/kg (HEL-L), HEL medium dose 18 g/kg (HEL-M) and HEL high dose 54 g/kg (HEL-H) groups. The model rats were intratracheally injected with 3 mg/kg LPS to establish an ALI model. Leukocyte counts, lung wet/dry weight ratio, as well as myeloperoxidase (MPO) activity were determined followed by the detection with hematoxylin and eosin staining, enzyme linked immunosorbent assay, quantitative real time polymerase chain reaction, western blotting, immunohistochemistry, and immunofluorescence. Besides, to explore the effect of HEL on ALI-mediated intestinal flora, we performed 16s rRNA sequencing analysis of intestinal contents. RESULTS: HEL attenuated LPS-induced inflammation in lung tissue and intestinal flora disturbance. Mechanism study indicated that HEL suppressed the lung coefficient and wet/dry weight ratio of LPS-induced ALI in rats, inhibited leukocytes exudation and MPO activity, and improved the pathological injury of lung tissue. In addition, HEL reduced the expression of tumor necrosis factor-alpha, interleukin-1beta (IL-1ß) and interleukin-6 (IL-6) in bronchoalveolar lavage fluid and serum, and inhibited nuclear displacement of nuclear factor kappa-B p65 (NF-κBp65). And 18 g/kg HEL also reduced the expression levels of toll-like receptor 4 (TLR4), myeloid differentiation factor 88, NF-κBp65, phosphorylated inhibitor kappa B alpha (phospho-IκBα), nod-like receptor family pyrin domain-containing 3 protein (NLRP3), IL-1ß, and interleukin-18 (IL-18) in lung tissue, and regulated intestinal flora disturbance. CONCLUSIONS: In summary, our findings revealed that HEL has a protective effect on LPS-induced ALI in rats, and its mechanism may be related to inhibiting TLR4/ NF-κB/NLRP3 signaling pathway and improving intestinal flora disturbance.


Assuntos
Lesão Pulmonar Aguda , Microbioma Gastrointestinal , Ratos , Masculino , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Lipopolissacarídeos/efeitos adversos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Domínio Pirina , RNA Ribossômico 16S , Ratos Sprague-Dawley , Transdução de Sinais , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/genética , Pulmão , Interleucina-6
8.
J Tradit Chin Med ; 44(2): 381-387, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38504544

RESUMO

OBJECTIVE: To evaluate the efficacy of Qidong Huoxue decoction (,QDHX) in treating acute lung injury and acute respiratory distress syndrome (ALI/ARDS) when used as an adjunctive treatment. METHODS: ALI/ARDS patients admitted to our medical intensive care unit were randomly allocated to the control group or the QDHX group and received standard therapy. The QDHX group received QDHX (50 mL per day for 14 d) orally or via a gastric tube. The primary outcome was measured according to Traditional Chinese Medicine (TCM) syndrome scores, with partial pressure of oxygen/fraction of inspired oxygen (PaO2/FiO2) levels as the secondary outcome. RESULTS: A total of 73 patients completed the study (36 in the TCM and 37 in the conventional group), and their records were analyzed. After 14-d treatment, the TCM group showed a significant decrease in TCM syndrome scores (P < 0.05) and increased PaO2/FiO2 levels (P < 0.05). The therapeutic effect of integrated Chinese and western medicine was more significant than that of Western Medicine alone. No serious side effects were observed. CONCLUSIONS: Our study results show that QDHX in combination with conventional drug therapy can significantly reduce some clinical symptoms in patients with ALI/ARDS.


Assuntos
Lesão Pulmonar Aguda , Síndrome do Desconforto Respiratório , Humanos , Lesão Pulmonar Aguda/tratamento farmacológico , Síndrome do Desconforto Respiratório/tratamento farmacológico , Unidades de Terapia Intensiva , Oxigênio
9.
J Ethnopharmacol ; 327: 118022, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38453101

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Acute lung injury (ALI) is an acute multifactorial infectious disease caused by trauma, pneumonia, shock and sepsis. Paeoniae Radix Rubra (Paeonia lactiflora Pall. or Paeonia veitchii Lynch, Chishao in Chinese, CS) and Salviae Miltiorrhizae Radix et Rhizoma (Salvia miltiorrhiza Bge., Lamiaceae, Danshen in Chinese, DS) are common traditional Chinese medicines (TCMs). CS-DS herb pair has been widely used to promote blood circulation and eliminate blood stasis in Chinese clinical practice, appearing in a variety of prescriptions. However, it is still unclear for the effect and active ingredients of the herb pair on ALI. AIM OF THE STUDY: The study investigated the effect and active ingredients of CS-DS herb pair and demonstrated the synergistic effect and mechanisms of the active ingredients. MATERIALS AND METHODS: Lipopolysaccharides (LPS)-stimulated RAW264.7 macrophage cells and BALB/c mice were used to establish an ALI model to investigate the effect of CS-DS herb pair on ALI. Network pharmacology and molecular docking were used to analyze the active ingredients and potential mechanisms of the herb pair. The synergistic effects and mechanisms of active ingredients on ALI were validated by in vitro and in vivo experiments. RESULTS: CS-DS herb pair had a synergistic effect on LPS-induced ALI. Based on the network pharmacology, the compounds paeoniflorin and luteolin were screened. Both paeoniflorin and luteolin had good affinity for NF-κB and MAPK by molecular docking. LPS stimulation of RAW264.7 cells resulted in a significant increase in ROS, NO, TNF-α, IL-6 and IL-1ß, while the paeoniflorin combined with luteolin significantly reduced their expressions. In the LPS-induced ALI model, the combination also reduced the expression of inflammatory factors and oxidative stress levels. Furthermore, LPS activated the NF-κB and MAPK signaling pathways, whereas the combination decreased the expression of proteins in both pathways. CONCLUSION: CS-DS herb pair alleviated LPS-induced ALI with the active ingredients paeoniflorin and luteolin, which suppressed inflammation and oxidative stress via regulation of NF-κB and MAPK signaling pathways.


Assuntos
Lesão Pulmonar Aguda , Glucosídeos , Lipopolissacarídeos , Monoterpenos , Animais , Camundongos , Lipopolissacarídeos/toxicidade , Luteolina/farmacologia , Luteolina/uso terapêutico , NF-kappa B/metabolismo , Simulação de Acoplamento Molecular , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo
10.
Mol Med Rep ; 29(5)2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38516767

RESUMO

Acute lung injury (ALI) is an acute inflammatory lung disease associated with both innate and adaptive immune responses. Hexokinase 2 (HK2) is specifically highly expressed in numerous types of inflammation­related diseases and models. In the present study in vitro and in vivo effects of targeted degradation of HK2 on ALI were explored. The degradation of HK2 by the targeting peptide TAT (transactivator of transcription protein of HIV­1)­ataxin 1 (ATXN1)­chaperone­mediated autophagy­targeting motif (CTM) was demonstrated by ELISA and western blotting in vitro and in vivo. The inhibitory effects of TAT­ATXN1­CTM on lipopolysaccharide (LPS)­induced inflammatory responses were examined using ELISAs. The therapeutic effects of TAT­ATXN1­CTM on LPS­induced ALI were examined via histological examination and ELISAs in mice. 10 µM TAT­ATXN1­CTM administration decreased HK2 protein expression and the secretion of proinflammatory cytokines (TNF­α and IL­1ß) without altering HK2 mRNA expression in LPS­treated both in vitro and in vivo, while pathological lung tissue damage and the accumulation of leukocytes, neutrophils, macrophages and lymphocytes in ALI were also significantly suppressed by 10 µM TAT­ATXN1­CTM treatment. TAT­ATXN1­CTM exhibited anti­inflammatory activity in vitro and decreased the severity of ALI in vivo. HK2 degradation may represent a novel therapeutic approach for ALI.


Assuntos
Lesão Pulmonar Aguda , Hexoquinase , Animais , Camundongos , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/patologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Hexoquinase/antagonistas & inibidores , Hexoquinase/metabolismo , Lipopolissacarídeos/efeitos adversos , Pulmão/patologia
11.
Int Immunopharmacol ; 131: 111802, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38467082

RESUMO

Acute lung injury (ALI) is an acute respiratory-related progressive disorder, which lacks specific pharmacotherapy. Icariin (ICA) has been shown to be effective in treating ALI. However, the targets and pharmacological mechanisms underlying the effects of ICA in the treatment of ALI are relatively lacking. Based on network pharmacology and molecular docking analyses, the gene functions and potential target pathways of ICA in the treatment of ALI were determined. In addition, the underlying mechanisms of ICA were verified by immunohistochemistry, immunofluorescence, quantitative Real-time PCR, and Western blot in LPS-induced ALI mice. The biological processes targeted by ICA in the treatment of ALI included the pathological changes, inflammatory response, and cell signal transduction. Network pharmacology, molecular docking, and in vivo experimental results revealed that ICA inhibited the complement C5a-C5aR1 axis, TLR4 mediated NF-κB, MAPK, and JAK2-STAT3 signaling pathways related gene and protein expressions, and decreased inflammatory cytokine, chemokine, adhesion molecule expressions, and mitochondrial apoptosis in LPS-induced ALI.


Assuntos
Lesão Pulmonar Aguda , Complemento C5a , Flavonoides , Lipopolissacarídeos , Receptores de Complemento , Animais , Camundongos , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Complemento C5a/metabolismo , Flavonoides/uso terapêutico , Lipopolissacarídeos/farmacologia , Pulmão/patologia , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Receptores de Complemento/metabolismo
12.
J Ethnopharmacol ; 328: 118005, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38508433

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Reyanning (RYN) mixture is a traditional Chinese medicine composed of Taraxacum, Polygonum cuspidatum, Scutellariae Barbatae and Patrinia villosa and is used for the treatment of acute respiratory system diseases with significant clinical efficacy. AIM OF THE STUDY: Acute lung injury (ALI) is a common clinical disease characterized by acute respiratory failure. This study was conducted to evaluate the therapeutic effects of RYN on ALI and to explore its mechanism of action. MATERIALS AND METHODS: Ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to analyze the chemical components of RYN. 7.5 mg/kg LPS was administered to induce ALI in rats. RYN was administered by gavage at doses of 2 ml/kg, 4 ml/kg or 8 ml/kg every 8 h for a total of 6 doses. Observations included lung histomorphology, lung wet/dry (W/D) weight ratio, lung permeability index (LPI), HE staining, Wright-Giemsa staining. ELISA was performed to detect the levels of TNF-α, IL-6, IL-10, Arg-1,UDPG. Immunohistochemical staining detected IL-6, F4/80 expression. ROS, MDA, SOD, GSH/GSSG were detected in liver tissues. Multiple omics techniques were used to predict the potential mechanism of action of RYN, which was verified by in vivo closure experiments. Immunofluorescence staining detected the co-expression of CD86 and CD206, CD86 and P2Y14, CD86 and UGP2 in liver tissues. qRT-PCR detected the mRNA levels of UGP2, P2Y14 and STAT1, and immunoblotting detected the protein expression of UGP2, P2Y14, STAT1, p-STAT1. RESULTS: RYN was detected to contain 1366 metabolites, some of the metabolites with high levels have anti-inflammatory, antibacterial, antiviral and antioxidant properties. RYN (2, 4, and 8 ml/kg) exerted dose-dependent therapeutic effects on the ALI rats, by reducing inflammatory cell infiltration and oxidative stress damage, inhibiting CD86 expression, decreasing TNF-α and IL-6 levels, and increasing IL-10 and Arg-1 levels. Transcriptomics and proteomics showed that glucose metabolism provided the pathway for the anti-ALI properties of RYN and that RYN inhibited lung glycogen production and distribution. Immunofluorescence co-staining showed that RYN inhibited CD86 and UGP2 expressions. In vivo blocking experiments revealed that blocking glycogen synthesis reduced UDPG content, inhibited P2Y14 and CD86 expressions, decreased P2Y14 and STAT1 mRNA and protein expressions, reduced STAT1 protein phosphorylation expression, and had the same therapeutic effect as RYN. CONCLUSION: RYN inhibits M1 macrophage polarization to alleviate ALI. Blocking glycogen synthesis and inhibiting the UDPG/P2Y14/STAT1 signaling pathway may be its molecular mechanism.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Ratos , Animais , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Interleucina-10/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Cromatografia Líquida , Interleucina-6/metabolismo , Uridina Difosfato Glucose/metabolismo , Uridina Difosfato Glucose/farmacologia , Uridina Difosfato Glucose/uso terapêutico , Espectrometria de Massas em Tandem , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Pulmão , Macrófagos/metabolismo , RNA Mensageiro/metabolismo
13.
Molecules ; 29(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38474447

RESUMO

Acute lung injury (ALI) is a respiratory failure disease associated with high mortality rates in patients. The primary pathological damage is attributed to the excessive release of pro-inflammatory mediators in pulmonary tissue. However, specific therapy for ALI has not been developed. In this study, a series of novel ferulic acid-parthenolide (FA-PTL) and ferulic acid-micheliolide (FA-MCL) hybrid derivatives were designed, synthesized, and evaluated for their anti-inflammatory activities in vitro. Compounds 2, 4, and 6 showed pronounced anti-inflammatory activity against LPS-induced expression of pro-inflammatory cytokines in vitro. Importantly, compound 6 displayed good water solubility, and treatment of mice with compound 6 (10 mg/kg) significantly prevented weight loss and ameliorated inflammatory cell infiltration and edema in lung tissue, as well as improving the alveolar structure. These results suggest that compound 6 (((1aR,7aS,8R,10aS,10bS,E)-8-((dimethylamino)methyl)-1a-methyl-9-oxo-1a,2,3,6,7,7a,8,9,10a,10b-decahydrooxireno[2',3':9,10]cyclodeca[1,2-b]furan-5-yl)methyl (E)-3-(4-hydroxy-3-methoxyphenyl)acrylate 2-hydroxypropane-1,2,3-tricarboxylate) might be considered as a lead compound for further evaluation as a potential anti-ALI agent.


Assuntos
Lesão Pulmonar Aguda , Ácidos Cumáricos , Sesquiterpenos , Humanos , Animais , Camundongos , Lipopolissacarídeos/efeitos adversos , Anti-Inflamatórios/farmacologia , Pulmão/metabolismo , Lesão Pulmonar Aguda/tratamento farmacológico , Citocinas/metabolismo , Sesquiterpenos/farmacologia , Lactonas/farmacologia
14.
Mol Immunol ; 168: 64-74, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428216

RESUMO

Septic lung injury is characterized by uncontrollable inflammatory infiltrations and acute onset bilateral hypoxemia. Evidence has emerged of the beneficial effect of hydrogen in acute lung injury (ALI), but the underlying mechanism is unclear. In this research, the recovery action of hydrogen on lipopolysaccharide (LPS)-induced ALI in mice and A549 cells was investigated. The 7-day survival rate and body weight of mice were measured after intraperitoneal injection of LPS. Lung function was determined by a whole body plethysmography (WBP) system using the indicators respiratory rate and enhanced pause. Hematoxylin and eosin (HE) staining confirmed the signs of pulmonary edema and inflammatory ooze. Reverse transcription-polymerase chain reaction (RT-PCR) quantification was used to detect the expression of inflammatory factors. Western blotting analysis evaluated the expression levels of involved proteins in the AMP-activated protein kinase (AMPK) pathway. The experimental results confirmed that hydrogen provided an essential solution to the dissipative effects of LPS on survival rate, weight loss and lung function. The LPS-stimulated inflammatory factors, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) were also suppressed by hydrogen in A549 cells. Western blot analysis showed that hydrogen significantly upregulated the levels of phosphorylated AMPK (p-AMPK) and lowered the LPS-induced increased expression of dynamin-related protein 1 (Drp1) and Caspase3. These findings prove that hydrogen attenuated LPS-treated ALI by activating the AMPK pathway, supporting the feasibility of hydrogen treatment for sepsis.


Assuntos
Lesão Pulmonar Aguda , Endotoxinas , Animais , Camundongos , Endotoxinas/metabolismo , Lipopolissacarídeos/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Hidrogênio/efeitos adversos , Hidrogênio/metabolismo , Transdução de Sinais , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Pulmão/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
15.
Microbiome ; 12(1): 56, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38494479

RESUMO

BACKGROUND: Accumulating clinical evidence suggests that lung microbiome is closely linked to the progression of pulmonary diseases; however, it is still controversial which specimen type is preferred for the evaluation of lung microbiome. METHODS AND RESULTS: To address this issue, we established a classical acute lung injury (ALI) mice model by intratracheal instillation of lipopolysaccharides (LPS). We found that the bacterial DNA obtained from the bronchoalveolar lavage fluid (BALF), intact lung tissue [Lung(i)], lung tissue after perfused [Lung(p)], and feces of one mouse were enough for 16S rRNA sequencing, except the BALF of mice treated with phosphate buffer saline (PBS), which might be due to the biomass of lung microbiome in the BALF were upregulated in the mice treated with LPS. Although the alpha diversity among the three specimens from lungs had minimal differences, Lung(p) had higher sample-to-sample variation compared with BALF and Lung(i). Consistently, PCoA analysis at phylum level indicated that BALF was similar to Lung(i), but not Lung(p), in the lungs of mice treated with LPS, suggesting that BALF and Lung(i) were suitable for the evaluation of lung microbiome in ALI. Importantly, Actinobacteria and Firmicutes were identified as the mostly changed phyla in the lungs and might be important factors involved in the gut-lung axis in ALI mice. Moreover, Actinobacteria and Proteobacteria might play indicative roles in the severity of lung injury. CONCLUSION: This study shows both Lung(i) and BALF are suitable for the evaluation of murine lung microbiome in ALI, and several bacterial phyla, such as Actinobacteria, may serve as potential biomarkers for the severity of ALI. Video Abstract.


Assuntos
Lesão Pulmonar Aguda , Microbiota , Animais , Camundongos , Líquido da Lavagem Broncoalveolar/microbiologia , Lipopolissacarídeos , RNA Ribossômico 16S/genética , Pulmão/microbiologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Bactérias/genética
16.
J Nanobiotechnology ; 22(1): 119, 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38494523

RESUMO

BACKGROUND: Acute lung injury (ALI) is a fatal respiratory disease caused by overreactive immune reactions (e.g., SARS-CoV-2 infection), with a high mortality rate. Its treatment is often compromised by inefficient drug delivery barriers and insufficient potency of the currently used drugs. Therefore, developing a highly effective lung-targeted drug delivery strategy is a pressing clinical need. RESULTS: In this study, the micro-sized inclusion cocrystal of asiatic acid/γ-cyclodextrin (AA/γCD, with a stoichiometry molar ratio of 2:3 and a mean size of 1.8 µm) was prepared for ALI treatment. The dissolution behavior of the AA/γCD inclusion cocrystals followed a "spring-and-hover" model, which meaned that AA/γCD could dissolve from the cocrystal in an inclusion complex form, thereby promoting a significantly improved water solubility (nine times higher than free AA). This made the cyclodextrin-based inclusion cocrystals an effective solid form for enhanced drug absorption and delivery efficiency. The biodistribution experiments demonstrated AA/γCD accumulated predominantly in the lung (Cmax = 50 µg/g) after systemic administration due to the micron size-mediated passive targeting effect. The AA/γCD group showed an enhanced anti-inflammatory therapeutic effect, as evidenced by reduced levels of pro-inflammatory cytokines in the lung and bronchoalveolar lavage fluids (BALF). Histological examination confirmed that AA/γCD effectively inhibited inflammation reactions. CONCLUSION: The micro-sized inclusion cocrystals AA/γCD were successfully delivered into the lungs by pulmonary administration and had a significant therapeutic effect on ALI.


Assuntos
Lesão Pulmonar Aguda , Ciclodextrinas , Triterpenos Pentacíclicos , Humanos , Ciclodextrinas/química , Distribuição Tecidual , Sistemas de Liberação de Medicamentos , Lesão Pulmonar Aguda/tratamento farmacológico , Solubilidade
17.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(2): 381-386, 2024 Feb 20.
Artigo em Chinês | MEDLINE | ID: mdl-38501424

RESUMO

OBJECTIVE: To investigate the mechanism of tea polyphenols (TP) for regulating NLRP3 inflammasomes and alleviating acute lung injury in septic mice. METHODS: Sixty C57BL/6 mice were randomly assigned into sham-operated, cecal ligation and puncture (CLP) and CLP +TP treatment groups, and survival of the mice was recorded after modeling in each group. The lung wet/dry weight ratio and myeloperoxidase (MPO) activity were determined, and lung injury of the mice was evaluated using HE staining and acute lung injury score. The expressions of IL-1ß, TNF-α, IL-6, NLRP3, caspase-1 p10, ASC, MPO, and caspase-8 in the lung tissue were detected using ELISA, Western blotting, or immunohistochemical staining. MDA and H2O2 levels in the lungs were detected to evaluate the level of oxidative stress. Immunofluorescence assay was used to investigate the co-localization of NLRP3 and NOX4. RESULTS: The postoperative mortality rate at 72 h, lung wet/dry weight ratio, MPO level and acute lung injury scores were significantly lower in CLP+TP group than in CLP group (P < 0.05). Treatment with TP significantly reduced the expressions of NLRP3-related inflammatory factors (P < 0.05) and lowered MDA and H2O2 levels in the lung tissue of the septic mice (P < 0.05). Immunofluorescence co-staining showed a lower level of NOX4 and NLRP3 co-localization in CLP+TP group than in CLP group. CONCLUSION: TP inhibits NLRP3 inflammasome-associated inflammation to alleviate CLP-induced acute lung injury in mice through a regulatory mechanism that inhibits NOX4 expression and reduces oxidative stress in the lung tissue.


Assuntos
Lesão Pulmonar Aguda , Sepse , Camundongos , Animais , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Peróxido de Hidrogênio , Camundongos Endogâmicos C57BL , Lesão Pulmonar Aguda/tratamento farmacológico , Pulmão/metabolismo , Sepse/tratamento farmacológico , Sepse/metabolismo , Chá
18.
Allergol Immunopathol (Madr) ; 52(2): 60-67, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38459892

RESUMO

OBJECTIVE: To explore the role of Y-box binding protein 1 (YBX-1) in the lipopolysaccharide (LPS)-stimulated inflammation and oxidative stress of BEAS-2B cell line and clarify the underlying mechanism. METHODS: LPS-stimulated BEAS-2B cells were used as a cell model of sepsis-stimulated acute lung injury (ALI). Immunoblot and quantitative polymerase chain reaction assays were used to detect the expression of YBX-1 in LPS-stimulated BEAS-2B cells. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide, TdT-mediated dUTP nick end labeling, and immunoblot assays were conducted to determine the effects of YBX-1 on cell survival. JC-1 staining and adenosine triphosphate production were used to detect the effects of YBX-1 on mitochondrial function. Immunostaining and enzyme-linked immunosorbent serologic assay were performed to examine the effects of YBX-1 on the inflammation and oxidative stress of cells. Immunoblot assay was conducted to confirm the mechanism. RESULTS: YBX-1 was lowly expressed in LPS-stimulated BEAS-2B cells and enhanced the survival of LPS-stimulated lung epithelial cells. In addition, YBX-1 improved mitochondrial function of LPS-stimulated BEAS-2B cells. YBX-1 inhibited the inflammation and oxidative stress of LPS-stimulated BEAS-2B cells. Mechanically, YBX-1 inhibited mitogen-activated protein kinase (MAPK) axis, thereby alleviating sepsis-stimulated ALI. CONCLUSION: YBX-1 alleviated inflammation and oxidative stress of LPS-stimulated BEAS-2B cells via MAPK axis.


Assuntos
Lesão Pulmonar Aguda , Sepse , Proteína 1 de Ligação a Y-Box , Humanos , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Células Epiteliais , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Pulmão , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Sepse/complicações , Sepse/metabolismo , Proteína 1 de Ligação a Y-Box/metabolismo
19.
Allergol Immunopathol (Madr) ; 52(2): 16-22, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38459886

RESUMO

BACKGROUND: Sepsis is a life-threatening condition characterized by acute organ dysfunction, which frequently leads to acute lung injury (ALI) in approximately 40% of cases. Isoegomaketone (IK) is a constituent of essential oil found in P. frutescens, known for its diverse biological properties, including anti-inflammatory and antitumor effects. However, the regulatory impact of IK on ALI in the context of sepsis remains poorly understood. METHODS: Pathological alterations in lung tissues were assessed using hematoxylin and eosin staining. Enumeration of total leukocytes and neutrophils in bronchoalveolar lavage fluid (BALF) was performed using a hematocytometer, while the levels of interleukin (IL)-6, IL-1ß, IL-10, and IL-17 in BALF were quantified using enzyme-linked immunosorbent serological assay. In addition, the levels of malondialdehyde (MDA), myeloperoxidase (MPO), superoxide dismutase (SOD), and glutathione (GSH) in lung tissues were assessed using respective commercial kits; cell apoptosis was evaluated using the terminal deoxynucleotide transferase--mediated dUTP nick end-labeling assay, and protein expressions were determined through Western blot analysis. RESULTS: Our findings revealed that cecal ligation and puncture (CLP) treatment in mice induced severe lung injury, characterized by increased lung injury scores, significant bleeding, neutrophil infiltration, and alveolar edema. However, treatment with IK at a dose of 10 mg/kg ameliorated CLP-induced lung injury, while IK dose of 5 mg/kg showed no significant effect. Additionally, IK treatment at 10 mg/kg reduced CLP-induced inflammation by decreasing levels of IL-6, IL-1ß, IL-10, and IL-17. Furthermore, IK at 10 mg/kg attenuated CLP-induced oxidative stress by modulating levels of MDA, MPO, SOD, and GSH. Moreover, IK treatment with a dose of 10 mg/kg activated the nuclear factor erythroid 2-related factor 2-heme oxygenase-1 (Nrf2-HO-1) pathway by enhancing the protein expressions of Nrf2 and HO-1. CONCLUSION: This study demonstrates that IK could mitigate the inflammatory response and oxidative stress associated with sepsis-induced ALI, supporting IK as a promising therapeutic agent for the treatment of sepsis-associated ALI.


Assuntos
Lesão Pulmonar Aguda , Furanos , Cetonas , Sepse , Camundongos , Animais , Interleucina-10/metabolismo , Interleucina-17/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Fator 2 Relacionado a NF-E2/uso terapêutico , Pulmão/patologia , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Estresse Oxidativo , Interleucina-6/metabolismo , Sepse/tratamento farmacológico , Sepse/complicações , Superóxido Dismutase/metabolismo , Superóxido Dismutase/farmacologia , Superóxido Dismutase/uso terapêutico
20.
J Biochem Mol Toxicol ; 38(3): e23674, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38454815

RESUMO

As a life-threatening disease, acute lung injury (ALI) may progress to chronic pulmonary fibrosis. For the treatment of lung injury, Tempol is a superoxide dismutase mimetic and intracellular redox agent that can be a potential drug. This study investigated the regulatory mechanism of Tempol in the treatment of ALI. A mouse model of ALI was established, and HE staining was used to examine histomorphology. The CCK-8 assay was used to measure cell viability, and oxidative stress was assessed by corresponding kits. Flow cytometry and dichlorodihydrofluorescein diacetate staining assays were used to detect reactive oxygen species (ROS) levels. Protein expression levels were measured by Western blot analysis and ELISA. Pulmonary vascular permeability was used to measure the lung wet/dry weight ratio. The level of oxidative stress was increased in ALI mice, and the level of ferroptosis was upregulated. Tempol inhibited this effect and alleviated ALI. The administration of Tempol alleviated the pathological changes in ALI, inhibited pulmonary vascular permeability, and improved lung injury in ALI mice. The upregulation of genes essential for glutathione (GSH) metabolism induced by lipopolysaccharide (LPS) was inhibited by Tempol. In addition, nuclear factor-related factor 2 (Nrf2) is activated by Tempol therapy to regulate the de novo synthesis pathway of GSH, thereby alleviating LPS-induced lung epithelial cell damage. The results showed that Tempol alleviated ALI by activating the Nrf2 pathway to inhibit oxidative stress and ferroptosis in lung epithelial cells. In conclusion, this study demonstrates that Tempol alleviates ALI by inhibiting ferroptosis in lung epithelial cells through the effect of Nrf2 on GSH synthesis.


Assuntos
Lesão Pulmonar Aguda , Óxidos N-Cíclicos , Ferroptose , Marcadores de Spin , Camundongos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Lipopolissacarídeos/farmacologia , Pulmão/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Células Epiteliais/metabolismo , Glutationa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...